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ABSTRACT 
 
   Previous research has shown that for extreme ground motions in 

California, the spectral shape is much different than that of a uniform hazard 
spectrum or a code design spectrum; and that differences in spectral shape 
significantly impact results of nonlinear dynamic analyses.  This paper builds on 
this previous research and looks more closely at the question of selecting and 
scaling ground motions for nonlinear dynamic collapse analyses.   

 

   Based on dynamic collapse simulation of single-degree-of-freedom 
models subjected to 70 ground motions, this work confirms the significant effects 
that spectral shape has on collapse capacity estimates.  However, for collapse 
analyses, we find that the use of a more appropriate ground motion intensity 
measure can reduce how sensitive the collapse capacity estimates are to the 
spectral shape of the ground motions.   

 

   A common ground motion intensity measure is the spectral acceleration at 
the building first mode period.  However, when first-mode dominated ductile 
structures behave nonlinearly and are near collapse, the “effective period” of the 
structure may be much larger than the fundamental period.  For these types of 
structures, this paper shows that the spectral acceleration at a period larger than 
the fundamental period is a more appropriate intensity measure for use in collapse 
simulation.  This paper proposes an equation that predicts this optimal period as a 
function of the building properties: fundamental period, ductility, and the negative 
stiffness after reaching the ductility capacity.  For ductile structures, this optimal 
extended period is approximately twice the fundamental period of the building. 

 
 

Introduction and Goals 
  
 One of the many challenges of using analytical models to predict structural collapse 
capacity is the choice of ground motions to use in simulation.  A key characteristic of ground 
motions, which is often not well quantified, is the spectral shape.  Baker (Baker 2005, chapter 6) 
has shown that for a 2% in 50 year ground motion in California, the spectral shape is much 
different than the shape of the Code design spectrum or a uniform hazard spectrum.  
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Figure 1. Comparison of an observed 
spectrum with spectra predicted by 
Boore, Joyner, and Fumal (1997). 

 To illustrate Baker’s finding regarding the spectral shape, Fig. 1 show the acceleration 
spectrum of a Loma Prieta ground motion3 (PEER 2005) that has a 2% in 50 year intensity at a 
period of 1.0 second [which is Sa(T1 = 1.0 sec) = 0.9g for this example site].  This figure also 
shows the ground motion predicted by Boore et al. (1997), consistent with this event and site.   
 

Fig. 1 clearly shows that this extreme 2% in 50 year motion has an unusual spectral shape 
with a “peak” from 0.6 to 1.8 seconds; much different than the shape of a uniform hazard 
spectrum.  Notice that this peak corresponds with the period for which this motion is considered 
to have a 2% in 50 year intensity.  At 1.0 second, the spectral value is 1.9 standard deviations 
above the predicted median spectral value, so this record is said to have “ε = 1.9 at 1.0 second.”  
ε (epsilon) is defined as the number of standard deviations between the observed spectral value 
and the median prediction from an attenuation function (so ε depends on the attenuation function 
used).  Similarly, this record has ε = 1.1 at 1.8 seconds, showing that ε depends also on period.   
  
 Baker has shown that observations made 
from Fig. 1 are general to all coastal California 
sites, so we can expect approximately ε = +2 for 
the 2% in 50 year ground motion level at such 
sites.  Therefore, if ε = +2 is expected for 2% in 
50 year motions in coastal California, when at 
such sites, we should select records with 
consistent ε (Baker 2005, chapter 6).  It should be 
noted that this expected ε is both hazard level and 
site dependent.  For example, for the 50% in 5 
year ground motions in coastal California, ε = 0 to 
ε = -2 are expected (Haselton at al. 2005).  In 
addition, in the Eastern United States, ε = 0 is 
expected for 2% in 50 year motions. 
 

Research also shows that this peaked spectral shape significantly increases the collapse 
capacity when the peak of the spectrum is near the fundamental period of the building (T1,struct) 
and we scale the ground motions based on T1,struct (Goulet et al. 2006; Baker 2005a, chapter 6) 
[e.g. for an example structure with T1,struct = 1.0 sec., we would select records to have ε = +2 at 
1.0 sec. and then scale all records to a target Sa(TIM = 1sec)4].  What if we select and scale 
records at a different period that may be more appropriate for collapse analyses? 

 
 Subjected to large ground motion, ductile structures will behave nonlinearly and soften 
causing the “effective period” of the structure to increase.  This suggests that if we want to better 
explain how the ground motions effect the nonlinear building response, it may be appropriate to 
use Sa(TIM), where TIM is not T1,struct, but is a lengthened period.  In this case, we would select 
the ground motions to have the proper ε at the extended period (ε = +2 for examples in this 
paper) and scale the records to a target Sa(TIM) at the same extended period.  The questions 

                     
3 This spectrum was scaled by a factor of 1.4 to be consistent with the point being illustrated.  
4 TIM is the period used in the ground motion intensity measure.  This is the period at which ground motions are both 
a) selected to have the proper ε, and b) scaled to the target spectral value. 



becomes this: If we select and scale ground motions at an extended period, thus having the peaks 
of the spectra at this extended period instead of the fundamental period, how will the difference 
in location of spectral peaks change collapse capacity predictions? 
 

This research has two goals: 1) to find the optimal IM period, Tcol,opt, which can be used 
to predict collapse capacity with the least error, and 2) to learn if ε affects the collapse capacity 
differently when the ground motions are selected and scaled for Sa(TIM = Tcol,opt) instead of 
Sa(TIM = T1,struct) (i.e. when the peaks of the spectra are at Tcol,opt rather than T1,struct).  To answer 
these questions, we selected sets of ground motions both without considering ε and with ε = +2 
at various periods.5  We then used these motions to predict the collapse capacities of single-
degree-of-freedom oscillators of various periods, ductilities, and other structural parameters. 
 

Ground Motion Sets 
 
 We selected eight ground motion sets (PEER 2005) which are roughly consistent with 
motions that may cause collapse of new buildings, excluding near-fault motions: M > 6.5, R > 
10km, and PGA > 0.2g (Kircher 2005).  Table 1 outlines the sets: Set A was selected without 
considering ε and the other seven sets were selected to have ε = +2 at a given period5 (termed 
“Set ε#”, where # is the period at which the ground motions were selected to have ε = +2).  The 
ε-selected sets are not mutually exclusive (because the +ε peak extends over a range of periods, 
as Fig. 1 shows), so the ε-selected sets consist of 65 records in total.  Fig. 2 compares the mean 
spectra of Sets A, ε1.0, ε2.0, and the Code spectrum (only two of seven ε-selected sets are shown 
for clarity).  Fig. 2 shows the clear effect that ε has on the mean spectral shape.   
 
 For the purpose of more clearly illustrating the points in this paper (i.e. the effects of ε), 
we scaled Set A to have a target Sa value at a 1.0 second period, then used the median spectrum 
of Set A as the 2% in 50 year uniform hazard spectrum (used for later comparisons).   
 

Table 1. Brief summary of eight ground motion sets used in this study. 

Ground 
Motion Set 

Period Used 
for Record 

Selection, TIM 

(sec.) (ε = +2)

Number 
of 

Records

Set A n/a* 26

Set ε0.5 0.5 20

Set ε1.0 1.0 20

Set ε1.5 1.5 20

Set ε2.0 2.0 20

Set ε2.4 2.4 20

Set ε3.0 3.0 20

Set ε4.0 4.0 20

* set selected without considering ε    
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Figure 2.    Comparisons of mean spectra for three ground motion sets and Code spectrum 

(ASCE 7-02 2002). 
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Table 2. Summary of parameters of
SDOF models use in this study. 

T1,struct 

(sec) µ
αc           

(no P-∆)
αc           

(with P-∆)

1.0 2 -0.10 -0.12
1.0 2 -0.30 -0.33
1.0 4 -0.05 -0.07
1.0 4 -0.10 -0.12
1.0 4 -0.20 -0.22
1.0 4 -0.30 -0.33
1.0 4 -0.40 -0.44
1.0 4 -0.50 -0.53
1.0 6 -0.10 -0.12
1.0 6 -0.30 -0.33
2.0 2 -0.10 -0.15
2.0 2 -0.30 -0.35
2.0 4 -0.10 -0.15
2.0 4 -0.30 -0.35
2.0 6 -0.10 -0.15
2.0 6 -0.30 -0.35

Figure 3. Backbone of material model 
used for SDOF (Ibarra et al. 2005) 

Single-Degree-of-Freedom Models 
 
 We used an array of single-degree-of-
freedom (SDOF) models to meet the objectives 
of this study.  The material model used was 
developed by Ibarra and Krawinkler (Ibarra 
2003, Ibarra et al. 2005).  This model has a 
trilinear backbone and is similar to the Clough 
model (i.e. peak-oriented) but also accounts for 
strength deterioration (both monotonic and 
cyclic).  Fig. 3 shows the backbone of the 
material model.  µ is the displacement ductility 
to the onset of the negative stiffness; and Kc is 
the post-capping negative stiffness (Kc = αcKe). 
 This study uses a cyclic deterioration rate 
consistent with conforming reinforced concrete 
elements (Haselton et al. 2005, chapter 5).   
 
 Each SDOF was designed for 2/3 of the 2% in 
50 ground motion level (ASCE7 2002) with Sadesign / 
Sa yield = 2.4 (to account for an R-factor and 
overstrength).  Table 2 lists the SDOF models used in 
this study, which represent a range of structural 
parameters (T1,struct, µ, and αc) to ensure that the 
conclusions of this study are not limited to a specific 
structural configuration.  P-∆ is treated according to 
guidelines proposed by Ibarra (2003, chapter 4); this 
is based on a stability coefficient and the value used 
results in a relatively small amount of P- ∆. 

 
For the collapse simulation of each SDOF 

model, we used the incremental dynamic analysis 
(IDA) approach and systematically scaled up the 
ground motion intensity until reaching the collapse 
capacity (Vamvatsikos 2002).  The collapse capacity 
associated with a given ground motion is theoretically 
defined as the Sa(T) that first causes dynamic 
instability where drifts increase without bounds.  For 
simpler implementation, collapse capacity is strictly 
defined as the Sa(T) that causes the ductility demand 
to be 5.0(∆cap / ∆y)6. 
 
 

                     
6 The 5.0 factor is appropriate for most cases, but 10.0 would be more appropriate for systems with low ductility and 
shallow post-capping stiffness. 



Effects of Record Selection and ε on Predicted Collapse Capacities 
 

 This section shows an example of how collapse capacity prediction is affected by 
considering ε in ground motion selection.  This example shows that using an extended period for 
the ground motion IM causes the collapse capacity prediction to be less sensitive to spectral 
shape (i.e. the ε of the ground motion spectra).  Results in this section are based on an SDOF 
with T1,struct = 1.0 sec., µ = 4, and αc = -0.10.  Even though the presented results are based on a 
single SDOF model, trends are similar for all SDOF models considered in this study. 
 
 Fig. 4 compares the collapse capacity distributions for ground motion Sets A, ε1.0, and 
ε2.0.  Note that for the ε-selected ground motion sets, the period used for ground motion selection 
and scaling are consistent (i.e. TIM).  Fig. 4a shows this comparison for TIM = 1.0 second and 
shows that the median collapse capacity predicted using Set A is 45% smaller than the capacity 
predicted using Set ε1.0.  This difference is consistent with the difference between the median 
spectra of the two ground motion sets (seen in Fig. 2) at a period of 2.0 seconds (which Table 3 
will later show to be near the optimal period for use in the IM).  This difference in collapse 
capacities is consistent with differences observed in similar work (Baker 2005, chapter 8).  Fig. 
4b shows the same comparison as 4a, but using an IM period of TIM = 2.0 seconds (i.e. selecting 
records to have ε = +2 at 2.0 seconds, and scaling the records at 2.0 seconds).  This shows that 
the median collapse capacity is only 25% smaller when using Set A as compared to Set ε2.0. 
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Figure 4.    Collapse capacity distributions for SDOF with (T1,struct = 1.0 sec., µ = 4, and αc = -

0.10), with and without considering ε, for ground motion selection at a) TIM = 1.0 sec, 
and b) TIM = 2.0 sec.  2% in 50 year Sa levels shown for reference.  

 
Figs. 4a-b show that using an extended period in the ground motion IM will make 

collapse capacity predictions less sensitive to ground motion selection (i.e. less sensitive to ε).  
However, even when the extended period is used, the collapse capacity with ground motion Set 
A is still 25% smaller than with Set ε2.0, which is still a significant difference.  We consider 
using ε-selected sets to be the correct method, so selecting ground motions not considering ε can 
lead to extremely conservative collapse predictions (25-45% depending on period used for IM).  

 
 Fig. 4 compared the median collapse capacities for only TIM = 1.0 and 2.0 sec.  Fig. 5a 
extends this comparison to all seven ε-selected ground motion sets.  This figure shows the ratio 
between the median collapse capacity and the 2% in 50 year demand, termed “collapse capacity 

(a) (b) 

2% in 50 years: 0.29g 2% in 50 years: 0.68g 



margin.”  This shows that collapse capacity margins for Set A and the ε-selected sets are most 
similar between 1.5 and 2.5 seconds, meaning that in this period range the collapse capacity 
predictions are least sensitive to record selection (and the effects of ε).   
 
 Fig. 5b shows the dispersions of collapse capacity for Set A and the ε-selected sets.  This 
shows that the dispersion values are similar for both ground motion selection methods, and they 
tend to be lowest when TIM is between 1.5 and 2.5 seconds.  
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Figure 5.    a) Collapse capacity margin and b) dispersion of collapse capacity [σLN(Sacollapse)], 

with and without considering ε in ground motion selection. 
 
 Figs. 4 and 5 illustrated the effects of ground motion selection method on the predicted 
distribution of collapse capacity.  To complete this simplified probabilistic collapse assessment, 
one can integrate the conditional probabilities of collapse (given the ground motion intensity) 
with the ground motion hazard curve to obtain the mean annual frequency of collapse (λcollapse) 
(Baker et al. 2003, Eq. 3.66).  Fig. 6a illustrates the results of this process for Set A (at various 
IM periods) and the ε-selected sets (at periods consistent with the ground motion selection).  
 

Several interesting observations can be made from the results of Fig. 6a; these results are 
consistent with those obtained for similar analyses of the other SDOF structures considered. 

- The λcollapse predictions using Set A are sensitive to the period used for the IM, while 
the values obtained using the various ε-selected sets (based on different periods) are 
reasonably consistent (i.e. for the ε-selected sets the computed λcollapse does not seem 
to be significantly affected by the period used for the IM).   

- Even though there is no observed trend between λcollapse and TIM (for the ε-selected 
sets), the use of different ground motion records causes significant scatter in the 
prediction of λcollapse (a factor of two difference for T = 1.5-2.5 for the ε-selected sets). 

- If this λcollapse assessment was completed only at T1,struct (as is common practice 
today), Set A would result in a λcollapse that is a factor of six larger than if Set ε1.0 were 
used.  For all SDOFs used in this study, this factor ranges from three to six. 

- At periods where Sets A and the ε-selected sets give most similar results (near 
Tcol,opt), the λcollapse predicted with Set A is only a factor of two larger than with the ε-
selected sets.  For all SDOFs used in this study, this factor ranges from one to three. 

- When using an extended period for the IM (near Tcol,opt) rather than T1,struct, the λcollapse 
prediction is less sensitive to ground motion selection and ε (i.e. spectral shape). 
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Figure 7.  Dispersion of collapse 
capacity [σLN(Sacollapse)] as a function of 

IM period, for all eight record sets. 
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Figure 6.    a) Mean annual frequency of collapse and b) P[Collapse | Sa2% in 50 yrs.] with and 

without considering ε in ground motion selection.  
 
 Fig. 6b is similar to 6a but shows the P[Collapse | Sa2% in 50 yrs.] rather than λcollapse.  This 
shows trends similar to Fig. 6a, but results are more variable because they are sensitive to the 
estimated tails of the distributions (see Fig. 4).  At T1,struct = 1 sec., the P[Collapse | Sa2% in 50 yrs.] 
is 20% larger for Set A; this difference reduces to 10% when using an extended period. 
 
 This section has shown that the collapse capacity and collapse rate predictions are less 
sensitive to ground motion selection method when an extended period is used in the IM.  This is 
simply because the IM at the extended period can predict the collapse capacity with less 
uncertainty.  The next section determines the optimal extended period to use in the IM. 
 

Optimal Period for Ground Motion Intensity for Collapse Analysis 
 
 As a structure is damaged and 
softens, the effective fundamental period of 
the structure increases.  When the structure 
is near collapse the fundamental period may 
be significantly longer than the initial 
undamaged period; and the amount of 
elongation is a function of the properties of 
the structural system (µ, αc, etc.).  This 
section shows how to predict the optimal 
extended period to use in the IM for collapse 
analyses.  Using this extended period (as 
opposed to T1,struct) as the period for the 
ground motion IM will provide two benefits: 

- Collapse capacity estimates will be 
less sensitive to effects of ε. 

- The IM using the extended period is 
more efficient, so fewer simulations 
are required to obtain equally precise 
predictions (Shome et al. 1998). 

x2 

(a) 

x6 

T1, struct = 1 sec. 
(b) 

+/- 10% +/- 20% 

T1, struct = 1 sec. 



Table 3. Summary of optimal ground 
motion IM periods (Tcol,opt) for SDOFs 

considered in this study.
T1,struct 

(sec.) µ
αc (with 

P-∆)

Optimal 
Period 
(sec.)

1.0 2 -0.12 1.2 2.7 1.7
1.0 2 -0.33 1.0 2.5 1.6
1.0 4 -0.07 1.7 2.8 2.3
1.0 4 -0.12 1.5 2.7 2.1
1.0 4 -0.22 1.2 2.6 1.7
1.0 4 -0.33 1.2 2.6 1.8
1.0 4 -0.44 1.2 2.5 1.7
1.0 4 -0.53 1.2 2.7 1.7
1.0 6 -0.12 1.5 2.9 2.4
1.0 6 -0.33 1.4 2.7 2.1
2.0 2 -0.15 2.2 4.5 3.4
2.0 2 -0.35 1.9 4.5 3.2
2.0 4 -0.15 3.7 > 5.0 ** --
2.0 6 -0.15 --* > 5.0 ** --
2.0 4 -0.35 3.7 > 5.0 ** --
2.0 6 -0.35 --* > 5.0 ** --

* σLn(SaCollapse) not < 0.3 for three or more ground motion sets
** the optimal period range extends beyond 5.0 seconds,
   which goes beyond the periods considered (0 < T < 5)

Optimal period 
range for all sets 

(sec.)

 Fig. 7 shows the dispersion [σLN(Sacollapse)] 
of collapse capacity for all eight record sets, using 
many periods for the IM (TIM = 0 to 5 seconds).  
This example is based on the same SDOF used in 
previous examples: T1,struct = 1.0 sec., µ = 4, and αc 
= -0.10.  The results for ground motion Set A, and 
Sets ε1.5 and ε2.0 (which are for periods closest to 
the optimal extended period) are shown with 
heavier lines for emphasis.  This figure shows that 
the optimal collapse period range (i.e. the periods 
associated with the lowest dispersion in collapse 
capacity) is 1.5-2.7 seconds7 and the optimal 
period is approximately 2.1 seconds.8 
 
 The same procedure of finding the optimal 
period was completed for all of the SDOF models 
listed in Table 2.  Table 3 presents the results for 
all SDOFs and shows that the optimal period 
clearly depends on µ and αc.  Specifically, for the 
SDOFs with T1,struct = 1.0 second and µ = 4, αc only 
affects the optimal period if αc > -0.2.  This is 
reasonably consistent with findings of Ibarra 
regarding the effect of αc on collapse capacity (Ibarra 2003, Figure 4.12).  The trends are the 
same for µ = 4 and 6, but the trends seem to be slightly different for µ = 2.  Using the results 
presented in Table 3, we created a simple equation to predict the optimal period as a function of 
T1, µ, and αc.   
 

                    [ ]col,opt 1,struct 1,structT  = 0.85T 1.56 2.8 0.85Tcµ α µ+ ≥           (1) 
 

Eq. 1 is based only on the data for µ = 4 and 6, and does not appear to be as effective for 
explaining the µ = 2 results.  Consequently, this equation will under-predict the optimal period 
for µ = 2.  Refining Eq. 1 to better capture the trends for lower ductility systems (e.g. µ = 2) is a 
topic of continued research.  Eq. 1 uses the inequality to cause αc to only increase the optimal 
period if αc > -0.20 (based on observations from Table 3).   
 

For first mode dominated structures, Eq. 1 can be used to approximate the optimal IM 
period with the following procedure: 1) complete a static pushover analysis of the structure, 2) 
estimate µ and αc from the static pushover results, 3) estimate T1,struct using an eigenvalue 
analysis or other appropriate method, then 4) use these values in Eq. 1.  Further work to verify 
this procedure and refine the prediction of Tcol,opt is in progress. 
 

                     
7 Optimal period range is defined as range for which σLN(Sacollapse) < 0.30 for three or more record sets. 
8 Often the period with lowest σLN(Sacollapse) is not central to the optimal period range (e.g. 1.5 sec. for Set A, see Fig. 
7), so the reported optimal period is judgmentally adjusted to be more centered in the optimal period range.  In 
decision of optimal period, more weight was given to Set A and the ε-selected sets near the optimal period. 



Summary and Conclusions 
 
 This paper discussed ground motion selection for collapse simulation and looked 
specifically at questions regarding using an extended period in the ground motion intensity 
measure.  Previous work (Baker 2005; Goulet et al. 2006) has shown that considering ε when 
selecting and scaling ground motions at T1,struct, leads to significant changes in collapse capacity 
prediction.  This paper follows that work by selecting ground motions considering ε at periods 
other than T1,struct (specifically periods near 2T1,struct, which this paper shows to be appropriate for 
collapse analyses of ductile structures) to see how this affects collapse capacity predictions.   
 
Summary and conclusions of this paper are as follows: 

a) The optimal period (Tcol,opt) for use in the ground motion IM for collapse can be 
predicted using Eq. 1; and is based on the T1,struct, µ, and αc of the structure. For 
typical conforming structures (µ = 4), Tcol,opt = 2T1,struct is generally appropriate. 

b) When comparing collapse capacity predictions for ground motion sets selected with 
and without considering ε (ε = +2), the median predicted collapse capacity (for an 
example SDOF with T1,struct = 1.0 sec., µ = 4, and αc = -0.1)9 is:  

 45% higher when using the ε-selected set at T1,struct. 
 25% higher when using the ε-selected set at 2T1,struct (which is close to Tcol,opt). 

c) Conclusion (b) shows two things: 
 The collapse capacity prediction is less sensitive to ground motion selection 

(i.e. the ε values) when TIM is near the optimal period, Tcol,opt. 
 Even when Tcol,opt is used as TIM, the ground motions with ε = +2 still increase 

the median collapse capacity by 25% (which is significant). 
d) When comparing λcollapse predictions for ground motion sets selected with and without 

considering ε (ε = +2), 
 λcollapse is a factor of 3-6 lower when using the ε-selected set at T1,struct. 
 λcollapse is a factor of 1-3 lower when using the ε-selected set at Tcol,opt. 

e) The results obtained using the epsilon-selected ground motion sets are believed to be 
more accurate (Baker 2005, Chapter 6), and so by minimizing the difference in 
estimated λcollapse, one is minimizing the error induced by not selecting records 
appropriate for collapse analyses.  

f) λcollapse predictions using the various ε-selected sets are reasonably consistent (this is 
an important finding that shows the stability of λcollapse predictions when using ground 
motions selected based on ε). 

g) To follow (f), even though there is no observed trend between λcollapse and TIM (for the 
ε-selected sets), the use of different ground motion sets causes λcollapse to vary by a 
factor of two.  This suggests that even when ε-based record selection is used, the 
results should only be assumed accurate within a factor of +/- 2.   Sensitivities of 
similar magnitude have also been documented in similar work (Haselton et al. 2005, 
chapter 6). 

 

                     
9 Note that this comparison depends on the ductility of the system (differences are more drastic for a more ductile 
system).  For example if we instead had a system with µ = 2 and αc = -0.10, these numbers would change to 40% 
and 30%, respectively.  



 Limitations of these conclusions are as follows: 
a) SDOF models were employed, so these results are limited to first-mode 

dominated structures for which the SDOF approximation is appropriate. 
b) The SDOF models covered a relatively small range of structural parameters.  

Therefore, conclusions are limited to the range of SDOF models considered.  
Incorporating a wider range of SDOF models is a subject of current research.   
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